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INTRODUCTION

This paper is a study of the approximation numbers and Kolmogoroff
diameters of diagonal mappings (primarily on the lp-spaces).

In Section 1, we make some remarks concerning the relationship between the
approximation numbers and Kolmogoroff diameters ofarbitrary operators. Of
special interest here is Theorem 1.2 and subsequent remarks that roughly
state that the approximation numbers and Kolmogoroff diameters are
surjectives of one another in the sense of Grothendieck [9, 10]. The most
important result in Section 1 is Theorem 1.8, which gives the exact values of
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the approximation numbers and Kolmogoroff diameters for diagonal
mappings from 100 to 11) , 1 ~ p < 00. Using 1.8, we show how to construct
operators whose Kolmogoroff diameters and approximation numbers
satisfy various growth conditions.

In Section 2, we compute exactly or give asymptotic estimates for the
approximation numbers and Kolmogoroff diameters of diagonal mappings
from 11) to lq, 1 ~ p, q ~ 00, essentially completing a study initiated by
Pietsch [36, 37]. Section 2 also provides the calculations necessary for later
sections.

In Section 3, we consider some special kinds of Schauder bases in Banach
spaces. The principal result of this section is Theorem 3.4, which, in a certain
sense, is a generalization of a result of Marcus [26] concerning the so-called
H-operators. Using a previous construction of Morrell and Retherford [31]
we are able to show (Theorem 3.5) that there are always nontrivial subspaces
of infinite-dim~nsionalBanach spaces that satisfy the hypotheses of 3.4.

In the final section, motivated by a classical result of Bernstein [1], we
introduce the concept of a Bernstein pair and prove that any pairing of
"classical" Banach spaces forms a Bernstein Pair.

Standard Concepts

All spaces considered are Banach spaces. By operator or mapping we mean
a bounded linear transformation. We denote by 2(E, F) the operators
from E to F and by K(E, F) the compact operators from E to F. Also by
ffo(E, F) we denote the finite-rank operators from E to F and by :F(E, F)
the closure of :Fo(E, F) in 2(E, F). By an isomorphism, we mean an open,
one-to-one mapping. A projection P is a member of 2(E, E) such that
p2 = P. If A is a subspace (i.e., closed linear subspace) of E, then A is
complemented in E if there is a projection P E 2(E, E) with P(E) = A.

If {xJ C E, then by [xJ we denote the closed linear span of {x~J in E.
By a biorthogonal system (Xi ,Ii) in E, we mean sequences (Xi) C E,

(f.) C E* such that

/;(x,) = 8,j .

A Schauder basis for E is a biorthogonal system (Xi ,f.) such that for each
XEE

L /;(x) Xi = X,
,~l

convergence in the norm of E. A sequence (xn ) C E is a basic sequence
if it is a basis for [xn]. A basis (xn ,In) is shrinking if (In) is a basis for E'.
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For 1 < p < 00, we denote by Ip the Banach space of scalar sequences
a = (a,) with

(

eo )l/P
Ii a II = tl Iai !p , if I':;; p < +00,

= sup I ai I, if p = 00.

Also, by co, we denote the closed subspace of leo consisting of all null
sequences.

Let (x,) C E, I < p < + 00, and let p' be given by (lip) + (lip') = 1.
(Of course, for p = 00, we understand p' = 1 and for p = 1, p' = 00.)
We say that (Xi) is €p-finite provided

is finite.

Approximation Numbers and Kolmogoroff Diameters

Let An(E, F) denote the operators of rank at most n from E to F. Following
Pietsch [36, 37], we define the nth approximation number, cxn(T), T E .P(E, F),
as follows:

cxiT) = inf{11 T - A II: A E AnCE, F)}.

For a Banach space X, we let Ux denote the unit ball of X. Now, we recall
the definition of the nth Kolmogoroff diameter, dn(A), of a bounded set
A C X with respect to Ux (see [17, 18, 30])

dn(A) = dn(A, Ux) = inf[inf{€ > 0 : L + €Ux"J A}],
L

where the infimum is taken over all at most n-dimensional subspaces L of F.
For T E .P(E, F) we define the nth Kolmogoroff diameter of T, dn(T), by

It is easy to see that dnCT) = inf II qTII, where the infimum is over all quotient
maps q: F ~ FIFo, where dim Fo < n. Clearly, cxn(T) is the value of
best linear approximation and dn(T) is the value of best nonlinear approxi­
mation to T (in the sense of finite-rank operators). Also, it is clear that cxn(T)
and dn(T) are monotone decreasing sequences and that limn cxn(T) = 0
if and only if T E :F(E, F) and limn dn(T) = 0 if and only if T E K(E, F).

For a brief discussion of the algebraic and analytic properties of cxn(T)
and dn(T), see [30]. For operators on Hilbert spaces the behavior of iXn(T) =
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dnCT) has been extensively studied. Most of the results concerning these
characteristics are compiled in the book of Gohberg and Krein [8]. For
arbitrary Banach spaces there are few results. (See the remarks at the end of
the paper.) Two of the best references are the papers of Marcus and Macaev
[26, 27]; related results are also to be found in the classic Memoir of
Grothendieck, Part 2].

The Krein-Milman-Krasnoselskii Theorem

The following property, established by Krein, Milman, and Krasnoselskii
[20] is very useful in computing Kolmogoroff diameters:

Let M be an (n + I )-dimensional subspace of a Banach space E. Then,
dk(UE n M, UE ) = I for all k :::::;; n.

We give a short proof of the above property. Our proof is taken from the
monograph of Bessaga and Retherford [2]. A similar proof is given in [25].
For another proof, see Tihomirov [43].

First, we make the following observation. If <X,:I II> is a normed linear
space and M a finite-dimensional subspace of X, then for each E > 0 there
is a norm: : such that for each x E X

:. x I! :::::;; Ix I :::::;; (1 + E) II x II

and with respect to I I, the metric projection onto M is unique.
Indeed if dim M = n, choose f1 ... fn , 11f, I' = I, biorthogonal to some

basis for M and let

The proof of the Krein, Milman, Krasnoselskii theorem now proceeds
as follows: The unit sphere SM, of M, is homeomorphic to the Euclidean
sphere sn. IfL is a k-dimensional subspace of E, introduce the norm described
above and let f(x) be the best approximation to x from L. Then, on SM,f
is a well-defined continuous antipodal map and so by Borsuk's antipodal
mapping theorem [45] there is an X o E SM such that f(xo) = 0, i.e.,
dk(M n UE , UE ) = 1.

We will make use of the following form of the Krein, Milman, Krasnoselskii
theorem:

Let M n and Mn+l be n-dimensional and (n + I)-dimensional subspaces of
a normed linear space E. Then, there is a Yo E M n+l such that

p-absolutely summing operators, nuclear operators, and maps of type Ip :
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For a sequence (xn ) in a Banach space E we set

( )

IIP

y,ixn) = L II X n liP ,

= sup II X n II, if

if 1 ~p < + 00

p = 00.

An operator T E .P(E, F) is p-absolutely summing [33-35] if there is a
constant C such that

for all finite sets {Xi}~1 in E.
ATE .P(E, F) is nuclear [9] provided that there are (In) C E', (Yn) C F

such that

and
oc,

L Il/nilllYnl1 < +00.
n=1

Here, In ® Yn denotes the rank one operator In ® Yn(X) = In(x) Yn .
An operator T E .P(E, F) is of type I'P [36, 37], if (aiT)) E I'P , where (anCT))

is the sequence of approximation numbers of T. These operators generalize
the classes a'P of von Neumann-Schatten [46].

Diagonal operators

Let E and F be Banach spaces with Schauder bases (xn) and (Yn), respec­
tively. An operator T E .P(E, F) with TXn = AnYn , where (An) is some fixed
scalar sequence, is called a diagonal operator (with respect to (xn ) and (Yn)).
In this work, we will be primarily concerned with diagonal mappings from
I'P to Iq with respect to the usual unit vector bases of these spaces. Also,
we will assume that I Al I ;;" I A2 I ;;" .... In our computations there will be
no loss of generality in making this assumption. We will make this precise
later. "T"" (An)" will mean "a diagonal map T corresponding to (An)."
We will also call a mapping on 100 defined by coordinate-wise multiplication
a diagonal map.

The .P'P-spaces

In the final section of this paper, we will consider the .P'P-spaces of [23, 24].
If E and F are isomorphic Banach spaces, the distance coefficient of E and F,
dee, F, is given by

dee, F) = inf II T 1111 T-l II,

where the infimum is over all isomorphisms from E onto F.
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Let,\ ~ 1 and 1 ~ p ~ 00. A Banach space E is an 2"p.A-space if for each
finite-dimensional subspace FeE, there is a finite-dimensional subspace B
with FeB C E such that

n = dimB,

the dimension of B. Here, lpn is the space of n-tuples with the lp-norm.
Finally, a space is an 2"p-space if it is an 2"p,,\-space for some ,\ ~ 1 [23].
These spaces include and generalize the classical LiS, E, jL) spaces and the
C(K)-spaces.

We use the following result of [23]:

For 1 ~ p < 00 an 2"p-space contains a complemented subspace isomorphic
to Ip •

Local Reflexivity and the Approximation Property

We will also need the following result due to Lindenstrauss and Rosenthal
[24; see also 39] (the principle of local reflexivity): Let X be a Banach space
(regarded as a subspace of X"), let U and F be finite-dimensional subspaces
of X" and X', respectively, and let E > O. Then, there is a one-to-one operator
T: U -+ X with Tx = x for x E X n U, feTe) = e(f) for e E U and fE F
and II TIl IIT-l il < 1+ E.

Finally, a Banach space E has the approximation property if %(F, E) =

K(F, E) for every Banach space F.
It is known [5, 6], that not every Banach space has the approximation

property. For numerous equivalent formulations of the approximation
property, see [9].

1. RELATIONSHIPS BETWEEN dnCT) AND cxnCT)

Kadec and Snober [16], using a result of John [14], have shown that for
any n-dimensional subspace En of a Banach space E, there is a projection
from E onto En of norm at most n1 / 2. Using this result, it is easy to strengthen
a result of Pietsch [36].

1.1. THEOREM. For any T E 2"(E, F) the following inequality is valid

for each n.

Proof Let A E An(E, F) and 0 = II T - A II. Ifll x II ~ 1, Tx E OUF + Ax
and so T(UE ) C OUF + A(E), i.e., dn(T) ~ cxn(T).

Now, suppose that T(UE) C {JUF+ L n , dim Lm ~ n. Let Pn : F ->- L n
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be a projection with II Pn II ~ n1/2 and let An = PnT. Then, since T." = y + ::,
where Y E L n and II z II ~ fJ for x E UE , we have

II Tx - Anx II = lI(y + =) - Pn(y + z)11 = il z - Pn(z)l!

~ (1 + n1
/
2

) fJ·

Thus, OI.nCT) ~ II T - An II ~ (1 + n1/2
) fJ and since fJ was arbitrarily chosen

with the above property

Some remarks concerning Theorem 1.1 are in order. The best value,
pen), for which

is not known. However, in general, pen) cannot be replaced by a constant K,
independent of n. Indeed, Enflo [5], (see also Figiel [6]) has constructed a
Banach space that lacks the approximation property. Thus, for such a space
E, there exists a Banach space F and aTE 2(F, E) such that limn->c.Q dn(T) = 0
and limn OI.n(T) =1= O.

If T E2(E, F), E and F arbitrary Banach spaces, it is easy to see that

lim dn(T) ~ d(T, K(E, F)) = inf{[[ T - S II : S EK(E, F)} ~ d(T, ~(E, F))n->oo

= inf{11 T - A II : A E~(E, F)} = lim OI.n(T).
n~oo

Thus, limn OI.n(T) = limn dn(T) for all T EK(F, E) and all F if and only if E
has the approximation property.

Even though dn and OI.n can behave as above, they are, of course, closely
related. Our next two results spell out this relationship.

1.2. THEOREM. For any T E 2(11 , E), OI.nCT) = dn(T)for each n.

Proof Suppose that T(U l ) C S(UE) + Fn , dim Fn ~ n. Let (en) denote
1

the unit vector basis of 11' Then, Tem = SVm+ Xm , where II Vm II ~ 1 and
XmEFn . Define A: 11 -+ E by Aem = Xm. Then, A is well-defined since
(xm ) is bounded. Thus,

II T - A II = sup liTem - Aem 11 ~ S,
m

and since rank A ~ n we have OI.n(T) ~ dn(T).
Obviously, Theorem 1.2 extends to her) domains for any set r. Less

obvious is the fact that 1.2 also extends to L1(11,) and to separable 2 1-spaces.
This follows from the remarks in [39] and the fact that L 1(/L) spaces have the
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lifting property. We conjecture that for a 2"1.,\-domain, we always obtain
anCT) :s.; C(A) dn(T).

We remark that the conjecture is true for compact T. Indeed, if E is an
~.,\-space and S: E ---+ FIFo is compact, then there is a number C(A) and an
operator $: E ---+ F such that $ is compact, Qo$ = S and Ii $ II :s.; C(A) II S II
(see [24]). Thus, if T: E ---+ F is compact, E > °and n :;?o 1, choose FoC F,
dim Fo :s.; n such that II QoTll :s.; dn(T) + E. Then, QoT is compact and so
has a compact lifting t with II til :s.; C(A) II QoT II. If A = T - t, then
Qo(t - T) = °and so t - T(x) E Fo, i.e., Rank t - T :s.; n. Thus,

anCT) :s.; !I T - (T - t)11 = II til :s.; C(A) II QoTll :s.; C(A)[diT) + E].

Our next result, an immediate corollary to Theorem 1.2, shows the
intimate relationship between dn and an . It also points out the difficulty in
computing pen) above.

1.3. COROLLARY. Let E be a Banach space and q a metric surjection of
LtCfL) onto E. Then, for any T E 2"(E, F), dn(T) = an(Tq)for each n.

Proof From the definition, it is clear that dn(T) = dn(Tq).
Before proceeding to the next result, we recall that Pietsch has shown [36]

that every operator of type 11 is nuclear.

1.4. COROLLARY. For any E > 0, if limn~", n3 / 2+€dn(T) = 0, then T is
of type 11 (hence nuclear).

The result 1.4 is immediate from 1.1. Corollary 1.4 answers a question of
Mitiagin [28] and strengthens some results in [2, 38]. We now give an example
showing that there is no converse to Corollary 1.4.

1.5. EXAMPLE. Let An = l/n1/2[log n] and let D be the diagonal operator
from 11 to 12 given by Den = Anen , where (en) denotes the unit vector basis
in both 11 and 12 • To see that D is nuclear, observe that we have the following
factorization:

where i is the natural inclusion map and D1 is the diagonal mapping on 12

corresponding to (An). Since (An) E 12 , D1 is a Hilbert-Schmidt operator
[36] and i is I-absolutely summing [9]. Thus, by [9] (or [36]), D is nuclear.
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In the next section, we prove a result which computes dn(T) exactly. However,
for our present purposes, it suffices to show that cxn(D) > (An+l/(n + 1)1/2,
since by 1.3, dn(D) = cxn(D) and we then have (n + 1)3/2+< dn(D) >
(n + I)</log(n + 1). To see that cxn(D) > An/(n + 1)1/2, observe that if A
is any operator from 11 to 12 with rank A ~ ll, then there is a vector ~ = (~,)

with ~i = 0 for i > n + 1, L:.~;:11 I ~, I = 1 such that A(~) = O. Thus,

We now present some results that show considerably more than
Example 1.5. In the next section, we compute (or give asymptotic estimates
of) the approximation numbers of diagonal operators on arbitrary lv-spaces.
But, since the techniques used to obtain the approximation numbers of
diagonals from 100 to Ip is so radically different from those employed in
Section 3, we give that result here.

We need two lemmas. The proof of the first lemma is immediate.

1.6. LEMMA. If P is an n-dimensional polytope in Euclidean n-space, then
its boundary is the union of its (n - I)-dimensional faces.

1.7. LEMMA. Let P be an n-dimensional polytope in Euclidean n-space
and let V be a k-dimensional manifold, 1 ~ k ~ n. IfP n V =I=- 0, then there
is an (n - k)-dimensional face F of P such that F n V =I=- 0.

Proof The proof is by induction. The result is obvious for n = 1, so
suppose the lemma holds for n - 1. By Lemma 1.6, P n V =I=- 0 implies
that there is an (n - I)-dimensional face F1 of P such that V n F1 =I=- 0.
If U1 denotes the affine manifold spanned by F1 , then V n VI is an affine
manifold of VI and the dimension of V n VI > k - 1. Without loss of
generality, we can suppose that k > I. Let U2 be an affine manifold of
V n VI of dimension k - 1 that intersects Fl' Now, F1 is an (n - 1)­
dimensional polytope and so by the induction hypothesis, there is an
(n - 1) - (k - 1) = (n - k)-dimensional face F ofF1 such thatF n V2 =I=- 0.

But F is also an (n - k)-dimensional face of P and F n V =I=- 0.
Now we can prove the main result of this section. This result improves

the result [37] of Pietsch.

1.8. THEOREM. Let 1 ~ P < 00 and let T: 100 ---'>- lv or Co ---'>- lv be a
diagonal map (an) ---'>- (Anan), where 1..1 > 1..2 ;5 .... Then, cxiT) = dk(T) =
(L::k+l I Ai [P)I/P for each k.
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Proof It is clear that for T to be well defined, (An) E 11" Also,
ak(T) ~ CL.;+1 I Ai 11')1/1' for any k by considering the kth truncation of T.

To prove the opposite inequality, let A: 100 ~ 11' be an arbitrary operator
k

of rank ~k, say A = 2:.J~di ® Y, . Then,

where Yi = (Yin) E 11' and x = (xn) E 100 • Let m > k and let

Then, V is a subspace of loomof dimension ~m - k that intersects the unit
ball of loom. By Lemma 1.7, V intersects a k-dimensional face of the unit
ball of loom. Thus, there exists x E loom with II x II = 1 and indices i1 , ... , im - k ,

I ~ i j ~ m for each j, such that I Xii I = 1 for I ~ j ~ m - k. Consider
oX = (Xi) E 100 ,where Xi = 0 for i ~ m + I and agrees with X E loom above,
for i ~ m. Then

Since A and m were arbitrary we conclude that

To see that dk(T) ~ (2:.;+1 I Ai 11')1/1' and hence, equal to ak(T), one only has
to apply the Krein-Milman-Krasnoselskii theorem and proceed as above.

From 1.8 we obtain as a corollary the following unpublished result of
Macaev (attributed by Marcus [26]).

1.9. COROLLARY. Let (fJn) be an II sequence with fJn ~ fJn+1 ~ O. Let K
denote the set of all elements (an) E II such that Ian I :( bn for each n. Then,
dn(K) = (2:.;+1 fJn).

Proof Observe that K = T( Uz), where T is the diagonal determined by
(fJn).

Using 1.8, it is now easy to construct a nuclear operator T with
an(T) = dn(T) tending to 0 as slowly as we please.
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1.10. EXAMPLE. Let (An) be a positive sequence monotonically tending
to 0 and let f3n = An - An+!. Define T: 100 - II by T(x) = (f3nxn)' Then,
T is nuclear and dn(T) = rxn(T) = An+! for each n.

Proof The operator T is clearly a lattice bounded (in the natural order
of II) operator and hence, [9] nuclear. By 1.8,

dn(T) = cxn(T) = I f3i = An+1 .

n-H

The existence of such an operator T is mentioned without proof by Marcus
[26].

2. DIAGONAL OPERATORS ON THE Ip-SPACES

In this section, we compute the approximation numbers of diagonal
mapping between the Ip-spaces. Before proceeding to our results, we make
some comments concerning Theorem 1.8 that also pertain to all of the results
in this section.

Suppose that T: 100 - Ip is a diagonal mapping corresponding to a sequence
(An) where (An) is not necessarily monotone. Let l:(n) denote the collection
of all subsets of the positive integers consisting of exactly n elements. Then,

(*)

For this reason, we can assume that always, (An) is monotone decreasing
in all succeeding calculations. (The modification of (*) in all cases will be
apparent.) The proof of (*) follows from the proof of 1.8 and the calculation
in [36].

We begin this section by computing the approximation numbers of the
natural injections I: Ip -IQ , where 1 ~ p ~ q ~ 00.

2.1. THEOREM. For I: II -/00 , d(I) = tlor every n.

Proof To show that rxnCT) ~ t for all n, it suffices to show that rxl(I) ~ t.
Let eo = ct, t, t,...) E 100 and let A: 11 - 100 be the rank one operator
A(Xi) = (L~~1 Xi) eo for (Xi) E 11' Then, II I - A II = SUPi 11(1 - A) ei 1100 =
SUPi II ei - eo 1100 = t· Thus, rxl(I) ~ t.

Now, suppose that rxk(I) < t for some k. Let € > 0 be such that
rxk(I) < t - € and choose an operator A: II - 100 of rank at most k such that
II I - A II ~ rxk(I) + €/2 < i - €/2. Then

sup 11([ - A) e, II" < i - €/2.
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If Ae, = (ali);:1 E 100 , then Ae, E B(A), where

B(A) = {y E A(l1): il Y 1:00 ~I A iil.

Since A has finite rank, B(A) is relatively compact. Now, for each i we have

I 1 - a,i I < 1/2 - E/2

Thus, if i =/c n,

and i a/} ; < 1/2 - E/2 for j =/c i.

ii Ae, - Aen 1100 = sup I a'i - an) I ~ i a'i ~ ani I
)

;? ([1/2 ., E/2] - [1/2 - E/2]) = E.

Thus, (Aei ) C B(A) has no convergent subsequence. Thus, cxn(I) ;? 1/2 for
each n.

On the other hand, it is obvious that OI. n(1) = dnCJ) = 1 for J the natural
injection 11 ->- co' Since J* = I, we see that, in general, OI.iT) =/c OI. n(T*).

In view of 2.1 the next result is somewhat surprising.

2.2. THEOREM. If 1 < p ~ 00 and I: Ip ->- 100 is the natural injection
operator, then OI.k(I) = I for all k.

Proof Clearly, OI.k(I) ~ 1 for all k. If CXk(I) < 1 for some k, choose E > 0
and an operator A: I p ->- 100 ofrank at most k such that I: I - A il < 1 - E/2.
We can represent A in the following fashion:

Ii;

A = If. @y"
,~1

where fi E lv, (lIp + l/p' = 1) and (y,) C lx .

By the choice of A, we have

sup 11(1 - A) ej 1100 ~ II I - A II < 1 - E/2.
)

If Yi = (Y,j) then

11 - ±<ej ,fi> Yij I < 1 - E/2
'~1

Thus,

for allj.

Ii;

I I<e) , 01 < E/2M,
i~1

for all j.

where M = max1<,oCk II Yi 1100 . Sincef. E Ip , there exists an indexjo such that

for 1 <: i < k.
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In particular, I<ej. ,fj)[ < E/2kM, for all i, 1 ~ i ~ k. Thus,

k

E/2M < L: I<e,o ,/'>1 < k . (E/2kM) = E/2M.
,~l

This contradiction shows that (Xk(l) ? I for all k.
Our next result shows that, in general, (Xn(T) oF dn(T).

2.3. THEOREM. Let 1 < p < 00 and I: Ip -+ 100 the natural injection. Then,
dn(l) = 2-l / P for all n.

Proof Let 1 < P < 00 and I: Ip -+ 100 , We use the formulation
dn(l) = inf{11 QFI Ii: F is an n-dimensional subspace of 100 and QF : 100 -+ loolF
the canonical quotient map}. Let eo = (1, I, I, ...) E 100 and Fo = [eo]' If
g E Ip, II g lip = I, choose N so that I gi I < E for all i > N. We can assume
that ti oF 0 for all i ~ N. Let I gl I = maxi<N I gi / and I gN I = mini<N I gi I
and So = 1/2(£1 + gN)' Now

II QFIII = sup II QFt II = sup d(g, F).
11<lIp~l 1I<llp~l

For the above g,

d(t, Fo) ~ s~p I gi - 00 I ~ max {! g, - So I, / 00 I} + E,
I i<;;,N

~ max{1 00 I I £1 - 00 I} + E,

by choice of 00 (since I tN - 00 I = I tl - 00 I).
Let g(x) = I x 1+ (I - I x /P)l/p. Then, the absolute maximum of g is

2/2l /
p

• Thus,

d(t, Fo) ~ max{1 00 I, 1£1 - So IJ + E = 1/2 max{1 gl + gN I, I tl - £N J} + E

~ 1/2(1 gl 1+ I gN I) + E ~ 1/2 . 2/2l /P+ E.

Since g was arbitrary, sUPI!<11 <1 d(g, Fo) ~ 1/2l /P • Equality occurs at
q

go = (I/2l /P , - I/2l / p
, 0, 0, 0, ...) E Ip , (i.e., d(go, F) = I/2l /

p
.) Thus,

dl(I) ~ SUPII<II'<l d(g, Fo) = 1/2l /p
• To see that dnCI) = SUPII<II <1 d(t, Fo)

for each n, observe that P

inf{11 QFIII: dimF = n,FC lOO} = inf{11 QGIII: dim G = n

2.4. THEOREM. If I ~ P ~ q < 00 and I: Ip -+ lq is the natural injection,
then (XlI) = 1 for all k.
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Proof For the moment, let Ir : Ir -+ 100 denote the natural injection.
Let 1 < p ~ q < + 00. Then, I p = IqIand so

1 = cxk(Ip) = CXk(IqI) ~ II Iq II cxk(I) = CXlc(I)

for each k. That cxle(I) ~ 1 is clear in this case.
Ifp = 1 and CXle(/) < 1 for some k, choose E > 0 and an A: 11 -+ Iqof rank

at most k such that II I - A II < 1 - E/2. Let B(A) = {x E A(h): II x Ilq ~ II A II}.
Then, B(A) is relatively compact and Ae, = (aU)':1 E B(A). Let (Y,)~:1 C B(A)
be an E/IO-net for B(A). If Yi = (YiJ~~I' then there is an indexjo such that
CL::J

o
i Y,j Iq)l /q< E/IO for each i, i = 1, ... , m. Also, for each i, there is an

index m(i) such that CL:7~1 I alJ - Ym(,)j Iq)l jq
= ~I Aei - )'m<O Il q < E/IO.

Thus,

(f I aij Iqrq ~ (t I alJ - )'m(i)j Iqfq + (f 1)'m(,j, IqYN
)=}o J=)o )=)0

< E/5 , for each i.

Hence, I a,j I < E/5 for each i and eachj ~ jo. Since

1 - E/2 > s~p 11(/ - A) ei Ii = (11 - aii Iq + )~1 Ia,) Iqtq
JoF'

we have I 1 - aii I < 1 - E/2 for all i. Thus, for i = jo , we obtain

1 - E/5 < 1 - aJoJo < 1 - E/2.

This absurdity shows that CXle(T) ~ 1 for each k.

2.5. COROLLARY (TO THE PROOF). For 1 ~ p ~ q < + 00 and for all n,

dn(I) = 1.

We now begin computing the approximation numbers of diagonal
operators on Ip-spaces. Again, we must consider different cases depending
on the relation between p and q. We first remark that Johnson in his thesis
[15] has shown (replacing polytopes in 1.8 by suitable normal hulls in Kothe
sequence spaces [19]) the following:

2.6. THEOREM. If 1 < q < p < 00 and T: Ip -+ Iq is a diagonal operator
determined by (An), then

where ! + ! = ! .
r p q
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For a diagonal mapping T from Ip to Ip , T'"'"' (An), it is well known (see,
e.g., [28, 30]) that dk(T) = cxk(T) = Ak+1 .

Unfortunately, we have been unable to compute exactly the approximation
numbers of a diagonal from Ip to Iq, I ~ p < q 0'( 00. We give asymptotic
estimates below that, in a sense, are the best possible. We first state an elemen­
tary lemma whose proof is immediate using the simplex method.

2.7. LEMMA. Let (An) be a decreasing sequence and I ~ r < 00. If
On = sUP{fLn+1 : EfL/ = 1, AifLi ? Ai+1fLi+1}, then

2.8. THEOREM. If T: 11 ---+ 100 is a diagonal, T'"'"' (Ai X:1 , then
(L~+l A£"l)-l ~ CXk(T) ~ min(Akl2, Ak+1) for each k.

Proof Let S: 11 ---+ 11 , S '"'"' (Ai)' Then, we have

Thus, cxk(T) = cxk(IS) ~ cx1{I) CXk-1(S) = lAk •

On the other hand, if S: 100 ---+ 11 corresponds to (fLn), where (fLn) satisfies
the hypotheses of 2.7, then we have

and

2.9. THEOREM. If 1 ~ p < q ~ 00 and T'"'"' (An), then (L:~: Ai')-l/r ~
cxk(T) ~ Ak+1for each k. Here, Ilr + Ilq = lip.

Proof The left-hand inequality follows from 2.7 as above. The right-hand
inequality is immediate by considering the kth truncation of T.

Let us again remark that the above estimates are the best asymptotic
estimates possible. Indeed, the injection It ---+ 100 shows that the right-hand
side can be attained. On the other hand, it is easy to see that if In denotes
the natural injection of 11(n) ---+ loo(n), then cxn-1(In) = lin. Let Ai = 1,
i .:( n, Ai = 0 for i > nand T = 11 ---+ 100 , T'"'"' (Ai)' Then CX n-1(T) = lin,
which is the left-hand side of 2.8.

Thus, in general, cxk(T) eft Ak -Ll • rndeed, we will now calculate the exact
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value of CXk(T) = dk(T) for T: /1 --+ /2' a diagonal corresponding to a
decreasing null sequence. For this, we need two lemmas. The first is com­
binatorial in nature.

2.10. LEMMA. For fixed k and n ;? k + 1, if (>..,);'.::~ are scalars satisfying
Al ;.: A2 ;? ... ;? An > An+! = 0, then there is a unique integer i, k + 1 c:;;
i ~ n such that

Proof If no such integer exists, then, since (n - k)jI;'~1 A~2 > °= An+! ,
we must have

An
2 < (n - k)/f ".;-2,

)~1

or
n-l

1 + An2 I A~2 < n - k.
}~1

Since the lemma is assumed not to hold, we must have

n-l
A;H < «n - 1) - k)/ I A~2

}~1

and as above, this leads to

A~_1 < «n - 2) - k)/'f2

A~2.
)~1

Continuing in this manner, we eventually obtain

k+l

A~+1 < «k + 1) - k)/I \-2.
)~1

or 1 + AZ+1L~~1 ,\~2 < 1. Thus, such an i exists. Now, suppose that the
lemma holds for some integer s, k + 1 <:; s ~ n with, say

;, (s - k)/t A;2 ::' A"~l .
)~1

Thus,

(*) (i - k)js - k > ±A~2/± A;2.
)--1 )~1
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,
"12 ,>"1 2 ~. .. -.. \ 2 ~~ ( ko)/" "I -2
I\i-i-l ,;...-' 1\1+2 ;.> -;;.> I\s :;::.:::. S - i..J I\J

)~l

s s

L ,\;2 ~ (s - n/(S - k» L A;2
)~HI J~l

and so - L:;~l A;2 ~ (k - i)/(s - k» L:;~l A;2. Then, from (*) above, we
obtain

i S t

L A;2 ?': ((i - k)/(s - k») L A;2 ~ L A;2.
)-1 J~l J~l

Thus, the integer i satisfying the lemma is unique.

2.11. LEMMA. Let Tn: ll(n) ---+ 12(n) be defined by Tne, = '\iei for each
i with (Ai)~~l as in Lemma 2.10. Then

with (xm , xn) = omn for I ~ m, n ~ k1. Here ( , ) denotes the usual inner
product on Mn).

Proof Let otk denote the right-hand side of the above expression. Let
€ > 0 and A E Ak(ll(n), 12(n» for k ~ n. If H = A(h(n», then H = [Xi]'
where (x, , xJ = O'l ' i ~ k. Thus,

II Tn - A I = max II(Tn - A) e, II = max II A,e, - Ae, II·
i~n i~n

If x, = (X,J~~1 , then d(A,ei , H) = Ai[1 - L:~~1 Xji]I/2 for each i and so

II Tn - A II ~ rrJ; Ai rI - Jtl X;iJ I.e.,

for each k ~ n.

Now, let (Xi) C 12(n) be such that (Xi, Xi) = 0ii' I ~ i, j ~ k, where
Xi = (Xii)~~1' Let H = [x,] and let P: 12(n) ---+ H be the projection

k
Pei = L:j~l (x, , ei) Xl . Then,

r
n ]1/2

d(A,e, , H) = II Aie, - ?Aie, II = A, 1 - ~l x~; for each i, 1 ~ i ~ n.
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Let I: 11(n) -+ 12(n) be the natural injection and define S: 12(n) -+ 12(n) by
Se, = A,ei , 1 ,::;; i ,::;; n. Thus, PSI: 11(n) is of rank k and

II Tn - PSIi! = max 1[(Tn - PSI) e) 112'
J--n

= max 11 A)e) - PA.;e) 112 ,
J~n

= max d(\e) , H),
l<n

and so cxk(Tn) ,::;; otk .
Observe that otk = inf{max,';;;n A,[I - A;P/2: A, E [0, I] for i'::;; nand

L~~1 Ai = I} = inf{maxi(n A,B~!2: B, E [0, I] and L~~1 B, = n - kJ =

infk';;;,';;;n {max[AIB~!2, ... , \.B~/2, A'+1]' B, E [0, I] with L~~1 B, = r - k}.

2.12. THEOREM. For fixed integers k, n, k + 1 :;; n, there is a unique
integer r(k, n), k + 1 ,::;; r(k, n) ,::;; n such that

where Tn is as in Lemma 2.11.

Indeed, choose r = r(k, n) as in Lemma 2.10. Using the remark following
the proof of 2.11, Theorem 2.12 follows. Now, observe that if T is a diagonal
map II -+ 12 corresponding to a monotonically decreasing null sequence,
then T = limn Tn, where Tn = TPnand Pn : II -+ 11(n) is the canonical
projection. Since I CXk(T) - CXk(S) [ ,::;; cxk(T - S) for any T and S, we have
CXk(T) = limn">", cxk(Tn) for each k. Using this remark and Theorem 2.12,
one can compute diT) = CXk(T) for such T.

2.13. EXAMPLE. Let T: II -+ 12 be given by Tei = i~I/2ei' Using
Theorem 2.12, it is easy to show that cxiT) = 1!(2n + 1)1/2 for each n.

Since the approximation numbers and Kolmogoroff diameters are homo­
geneous, we can summarize (and generalize) our results 2.1~2.5 as follows:

2.14. THEOREM. Suppose that (An) is an increasing sequence with limit A.
Then:

(i) If T: II -+ I"" T,..., (An), diT) = (Xn(T) = Al2 for all n; and
if T: II -+ co, dn(T) = (Xn(T) = Afor all n;
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(ii) if T: Ip --+ lx;, p > I, (Xn(T) = A for all nand dn(T) = A . 2-1/ 1'

for all n;

(iii) if 1 :::;;; p :::;;; q < 00 and T: Ip --+ Iq , then dn(T) = ,xn(T) = A
for all n.

We end this section with a few remarks concerning the relationships
between p-absolutely summing, nuclear, and type Ip-operators. Pietsch [36]
has shown that the composition of three I-absolutely summing operators
is of type 11' Example 1.5 shows that this result of Pietsch is the best possible;
for, the operator of Example 1.5 is the composition of two I-absolutely
summing operators, but not of type 11 .

If T is of type I p , p > I. not much can be said about T other than the
obvious fact that T is compact. Indeed, if p > 2, choose (An) E Ip \l2 with
I A, I :;: I AH-1 I· Construct the diagonal T: 12 -+ /2 corresponding to (An).
Then, T is of type /p and yet T is not q-absolutely summing for any value of
q. Indeed, if T were q-absolutely summing for some value of q, then T would
be Hilbert-Schmidt, hence. of type /2 [36]. But (Xk(T) = I AH1 I and (An) 1= /2 .

3. H-OPERATORS AND lOp-FINITE BASES

In Section I, we considered the relationships between the approximation
numbers and Kolmogoroff diameters of arbitrary operators between Banach
spaces. Of course, as seen in Section 2, by placing restrictions on the operators
better estimates can be given. Indeed, when one considers T E 2(E, E), the
techniques of spectral theory are available and theorems, analogous to
results on Hilbert space [8, 26, 27] can be obtained. Markus [26] has proved
the following beautiful result relating the eigenvalues, Kolmogoroff diameters
and approximation numbers of H-operators. An operator T acting on a
Banach space E is an H-operator if its spectrum is real and its resolvent
satisfies

II(T - AI)-1 II ~ c I 1m A i-I (lm A =Ie 0).

Here, of course, C is independent of the points of the resolvent. We point
out that an operator on a Hilbert space is an H-operator with constant C = I
if and only if it is a self-adjoint operator.

Now, we state the result of Marcus.

3.1. THEOREM. if T is a compact H-operator on a Banach space E, then
for each n
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Here, (\iT)) denotes the sequence of eigenvalues of T numbered in order of
decreasing modulus and taking into account their multiplicity and C is the
constant occurring in the definition above.

In a certain sense, the diagonal elements (An) of a diagonal basis map
en ->- Anun share some of the properties of eigenvalues. Thus, we are led to
a generalization of Theorem 3.1 to diagonal mappings between certain types
of bases.

We say that a basis (x,) for a Banach space E is E p-finite provided
Ep(Xn ) < + 00 (see the Introduction). In the termtnology of Grothendieck
[11], an E p-finite basis is a basis that is weakly p-summable.

It is clear from Holder's inequality that if lip + lip' = 1 and (f,) C E',
(y,) E F, EP{f.) < + co and Ep{y,) < + 00, then EI(f. (2<) Y,) < TOO.

3.2. PROPOSITION. If (f.) and (y,) are as abore and (An) is a null sequence,
then T = L:I Aif. (2<) y, defines a compact operator from E to F.

Proof For any N, [I L:N Aih (2<) Y, II ~ max,;", I A, ! Elf. 0 y.) and
this latter expression tends to 0 as N tends to 00. Thus. T E .~(E, F).

Now, we can prove the main result of this section.

3.3. THEOREM. Let T be a diagonal basis mapping en ->- Anun , where
(en ,f,,) and (un, gn) are bases for E and F, respectively, and (An) is a mono­
tonically decreasing null sequence An # O. Suppose that EI(gn @ en) and
EI(fn (2<) un) are finite. Then, we hare

Proof For each integer n, let Tn denote the restriction on Tto [el , ... , cn].
Then, Tn is invertible and r;;lu, = A;.-Ie, for i = I. 2, .... n. Thus.

Now, let F n be an arbitrary n-dimensional subspace in F. By the remark
after the proof of the Krein-Milman-Krasnoselskii theorem, there is a y * 0
in [ul , ... , UMI] such that d( y, Fn ) = I! y II. Let x = r;;ly and suppose, without
loss of generality, that II x!i = 1. Then,
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(Xn(T) ~ II i AJt @ u, II = An +111 f \/An+1f, @ u, II
l=n+l l=n-t 1

At fitst glance, Theorem 3.3 appears hard to apply. Indeed, if (xn '/n)
is a basis for a Banach space E with 0 < infn II X n II ~ SUPn II X n II < + 00

and E2(Xn) < + 00, E2(fn) < + 00, then (xn) is equivalent to the unit vector
basis of 12 , i.e., E is isomorphic to 12 under an isomorphism. <{(xn) = en'
However, by relaxing the conditions of 3.3 slightly, we obtain a result valid
for certain subspaces of arbitrary Banach spaces.

From the proof in [3 I J, it is not difficult to obtain the following result.

3.4. THEOREM. Let E be an infinite-dimensional Banach space, E :> 0,
and (a;) a null sequence with 0 < at < 1 for each i. Then, there is a basic
sequence (xn) in E with coefficient functionals (fn) in [xn]* such that

I - E ::( min (II Xn Ii, Un Ii) ~ max (II Xn II, Ilj~ ID < ] + E,
n 11

with Ela,x,) = Ela,/,) = 1.

To see how 3.4 applies to 3.3, consider the following: Let (An) be a mono­
tinically decreasing null sequence with 0 < An < 1. For E > 0, choose
On > 0 such that A~,-2I3n < (I + E) An (possible since 1.;;1 > 1) and such that
limn On I log An I = O. Let an = A~n12 and bn = A~-l3n. Then, (an), (bn) E Co by
the choice of On and 0 < an < 1. Thus, if

00

T = I bnfn 8))'n ,
n~1

where (xn ,fn) and (Yn, gn) are basic sequences satisfying 3.4, then
T = L~~1 bna;;2(anfn) @ (anYn) and so (as in the proof of Theorem 3.3) we
obtain

Thus, it is possible to construct an operator T on certain infinite­
dimensional subspaces of arbitrary Banach spaces E and F analogous to the
compact H-operators, in the sense of the conclusion of Theorem 3.1. We will
make use of this result and the technique of [31] in the next section.
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Motivation for this section is the following classical result of Bernstein
(see, e.g., [4]).

4.1. THEOREM. Let E be a Banach space and let (x n) be a linearly inde­
pendent sequence of elements of E. Given an arbitrary positive monotonically
decreasing null sequence (b n), there is an Xo E E such that d(xo , [Xl ... ·' x n]) = bn
for each n.

This leads to the following definition.

4.2. DEFINITION. Two Banach spaces E and F are said to form a Bernstein
pair if for any positive monotonic null sequence (bn) there is aTE 2(E, F)
and a constant M. depending only on T and (bn), such that bn ~ rxn(T) ~ Mb n
for all n. We say that (rxn(T» is equivalent to (f3n)' We write <E, F is a
Bernstein pair.

Some remarks concerning Definition 4.2 are in order.
In general, if <E, F) is a Bernstein pair, there are no equivalent norms on

E and F such that (Xn(T) = f3n . (Here. (Xn(T) denotes the nth approximation
number of T with respect to given norms.)

Indeed, suppose that ill III and I I are equivalent norms on E and F, respec­
tively, say

L2 111 x II ~ II xii c-( L l II X III

for all x E E, y E F. Then,

and

sup ICT - A)x I ~ L1K:;1 sup II(T - A)x :1,
111".111 i!.rllq

i.e., (Xn(T) ~ L1K:;lrxn(T). Similarly, (Xn(T) :;, L 2K1
1rxn(T), for all T E 2(E, F).

Since <E, F) is a Bernstein pair. there is aM> 0 and T such that
bn ~ rxn(T) ~ Mbn , where (b n) is a preassigned null sequence. Thus, the
inequalities yield

and so Kl ~ M-IK2 or Kl ~ M-IK1 , i.e., M ~ ]. From the definition
M ? ], thus, M = I.

4.3. Remark. It is clear from 4.] that by choosing any sequence of linearly
independent rank one operators in 2(E, F), E and F arbitrary and any null
sequence (b n ) as above, that there is an infinite rank To such that

rxnCTo) ~ bn .
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Thus, it is conceivable that any two infinite-dimensional Banach space
E and F form a Bernstein pair. It would be of considerable interest to know.
e.g., if <E, E) is a Bernstein pair for any infinite-dimensional Banach space E.
Of special interest in this case would be to assertain when the operator T
could be chosen to be an H-operator (it would be, of course, compact).

4.4. Remark. Let E and F be arbitrary infinite-dimensional Banach
spaces. Then, there are infinite-dimensional spaces Eo and Fo in E and F.
respectively, such that <Eo' Fo>is a Bernstein pair. Moreover, the operator T
satisfying the definition for <: Eo, Eo' can be chosen to be an H-operator.

The proof of 4.5 is immediate from 3.4. Indeed, for E > 0, the spaces
Eo and Fo can be chosen to have Schauder bases and the M accuring in
Definition 4.2 can be taken to be (I + E). The operator T E !f(Eo ' Eo)
constructed in 3.4 will be an H-operator [26].

4.5. Remark. If E = E1 EB E2 and F = F1 EB F2 and <E" F,:) is a
Bernstein pair for i = I or 2 then <E, F) is a Bernstein pair.

Proof Without loss of generality, suppose that <E1 ,F1\ is a Bernstein
pair. Let T E !f(El ' F1) be such that f3n -(: cxn(T) ~ Mf3n .

Let t = TP1 E !feE, F), where PI is the projection from E onto E1 .

Also, let Q1 be the projection of F onto Fl' Then, cxn(t) = cxn(TP1) ~
II PI II cxiT).

For E > 0 let A be an operator of rank at most n, such that II t - A II ~
cxn(t) + E and let B = Q1A1 , where Al is the restriction of A to E1 . Then,

II T - B:I = sup 11(1 - Q1A1)(x)11 = sup II Q11 - Q1A1(x)11
"x!l<l ':)'11'1
:reEl :reEl

~ II Q1 11I1 1 - A II ~ il Q1 II (cx n(1) + E).

But cxn(T) ~ II T - B II. Thus,

II Q1 11-1 f3n ~ II Q1 11-1 cxn(T) ~ cxn(1) ~ II PI II cxn(T) ~ II PI Ii Mf3n ,

i.e., <E, F) is a Bernstein pair.

4.6. Remark. If E has a Schauder basis, then <E, E) is a Bernstein pair.

Proof If An ""' 0, then the operator T = L:=l Anln EB X n , where <xn In)
is a basis for E, is a compact H-operator [26], with the sequence (An) as
eigenvalues. The result follows from Theorem 4.1.

In particular, if E is a separable ~p-space 1 ~ p ~ 00, then <E, E) is
a Bernstein pair. Indeed, every separable !fp-space has a basis [39].

Next, we consider the relationship between the approximation numbers of
an operator T and its adjoint T. It is obvious from the definition that
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cxn(T) :(; cxn(T). By considering the injection 11 --+ Co we see that strict
inequality can occur. Now, we show that, for certain operators, equality is
always obtained.

4.7. THEOREM. Let E and F be Banach spaces and let T E :!F(E, F). Then,
cxn(T) = cx n(T) for e~'ery n. (In particular. ifF has the approximation property,
equality holds for all compact operators.

(Hutton has recently observed that 4.7 is valid for arbitrary compact
operators. )

Proof Let S: E" --+ F be a finite-rank operator and let j: F --+ F" be the
canonical mapping. Let f3k(S) = inf{11 S - A II: A: E" --+ F, rank A :(; kj.
Choose, for E > 0, Ak : E" --+ F" such that II.iS - A" IIF" < (Xk(jS) + E. Let
G be the subspace spanned by jS(E") U Ak(E"). By the principle of local
reflexivity there is an operator cp: G --+ F such that II cp II = I, II cp-l ~I ~ 1 + E

and cp restricted to G n jF is the identity. Consider cpA,,: E" --+ F. If
II x" II :(; 1. we have

::(S - cpA,J x" IIF= I: rjSx" - cpA"x" IIF ~ IijSx" - A"x" ilF"

and so
i.e., f3,,(S) :(; (x. (.is).

Since T E :!F(E, F), T": E" --+.iF and there are finite-rank operators
Sn E 2(E",jF) such that limn II Sn - Til II = 0. For E > 0, choose N so that
II Til - Sri II < E/2 if n ;?: N. Since I f3k(T") - f3,,(Sn) I ~ Ii Til - Sn II, we
obtain

f3,,(j-lT") < f3,,(j-lSn) + E/2,

And from the above, we obtain

for n ;;:, N.

f3iT") :(; f3,,(j-lT") < f3,,(.i-lS n) + E/2 < (X,,(Sn) + E/2.

It follows that
f3,,(T") ~ (X,,(T").

Clearly, (X,,(T) ,c;:; f3,,(T"). Thus,

cx,,(T) :(; f3,,(T") :(; (X,,(T") :(; aiT) :(; (X,,(T).

As an immediate corollary to Theorem 4.7, we obtain the following fact
concerning Bernstein pairs.

4.8. COROLLARY. Suppose that <£', E') is a Bernstein pair, then, <E", F"')
is a Bernstein pair. If <E, F) is a Bernstein pair so is <F', E').

Our goal is to show that the "classical" Banach spaces form Bernstein
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pairs. More precisely, we wish to show that if E is an ,~>space and F and
.Pq-space, in the sense of Lindenstrauss and Pelczynski, then (E, F, is a
Bernstein pair. The idea of the proof of this fact is to reduce the problem to
the l,,-spaces. It will become apparent that the main obstruction to doing
this is the lack of suitable structure theorems for .Poo-spaces.

4.9. THEOREM. Let E be 100 or Co and F one of the spaces Ip , 1 :S;; p < 00.

Then (E, F\ and (F', E') are Bernstein pairs.

Proof The result is immediate from Theorems 1.8 and 4.7. If f3n "" 0,
let An = (f3n 1' - f3~+l)l/P and let T be the diagonal mapping corresponding
to (An)'

The above result is also valid of the roles of E and F are interchanged.
To prove this, we need the following lemma. We recall that a basis (xn ,In)
is shrinking if (fn) is a basis for E.

4.1. LEMMA. Suppose that E is reflexive or E' is separable and F has a
shrinking Schauder basis. Then, if (E, F"\ is a Bernstein pair, so is (E, F).

Proof Let f3n "" ° be given and let T: E --+ F" be such that (cxn(T))
is equivalent to (f3n). Also, let Sn denote the nth partial sum operator asso­
ciated with some shrinking basis for F. By the principle of local reflexivity
there are mappings

with I' Qn i! = 1,

II Q~l Ii :'(; 2 for all n with Qn the identity on S:*(TE) n jF. Since E is reflexive,
the sequence ([QnS~*T]*) clusters in the weak operator topology to a
bounded operator S*: F' --+ E'. We claim that (CXk(S)) "'" (CXk(T)). To see
this, observe that since each CX n is pointwise continuous we have cxn(S) :S;;
limm~oo sup cxn(QmS;:'*T) :'(; Kcxn(T). where K = SUPm II Sm Ii. For the opposite
inequality, for E > ° choose B: E --+ F such that rank B:S;; nand
cxn(S) > II S - B il - E. Then,

<xn(S) -+ E > II S - B Ii = lim inf sup II QnS:*Tx - Bx il
m~y. xeE

11J'1!~1

~ lim inf sup II QnS:*Tx - QnS:*jBx II
m~x. J'EE

11J'11~1

~ ! II T -.iB II ~ !<xn(T).

The proof for E' separable is essentially the same since, in this case, the
unit ball of E' is w*-sequentially compact. (In the preceding, j denotes the
canonical map from F --+ F**. Since the basis is shrinking, II S:*T 11 --+ II n·
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Indeed, Sn * --+ I, the identity, in the strong operator topology and the
result follows.)

4.11. COROLLARY. For 1 < p < 00, (/1" co> is a Bernstein pair. Thus,
for this range ofp, </1 , 11') is a Bernstein pair.

Proof The space Co has a shrinking basis and so the result is immediate
from 4.10.

Clearly, <11' , r.c> is a Bernstein pair. Indeed 100 contains 11' isometrically and
the natural diagonal suffices. That (/1 ,11') is a Bernstein pair for 1 < P < 00

now follows from 4.7.
The extreme case <11, co> requires a separate argument.

4.12. THEOREM. The couple </1 , co', forms a Bernstein pair.

Proof Write h = (Ejjlln»l and find ul"> E Co such that for each n,
[u(nl '" ui">] = Gn is isometric to 11(n) and define, for fJn ~ 0,

T: (EEl 11(n)h --+ (EEl Gn)o C co, by

no = T«f~n)) = ~ ttl fJ~n)g~n)uln).

Here, (gJ E 11 and (fJ,) are "blocked" according to the above decomposition.
If nk is such that nk < k :0( nk+1 ' then

nJ..+l 'l: n

cx,clT):o( sue II L fJ~nk)g~nk)u~nk) + L L fJ~n)g~n)u:n) II
11«,,) ".1 1.+1 n~lIk+l~1 /=1

'YO

<; fJk+1 sup L :<fJdfJk+1) g, I c= fJldl .
11«,,)11<1 ,~k+l

For the opposite inequality. if A = 11 --+ Co has rank ~k, then there are
k+1gl ... gk+l such that L1 I g, I = 1 and A(g) = 0, where g, = °for i > k + 1.

Thus,

1 k+l k+l

~ 2: L I fJ,g, I :;:: (fJ,,~d2) L i g, I = fJ"+1/2,
l=l l=l

i.e., </1 , Co) is a Bernstein pair.
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for all n.

4.13. THEOREM. If I < p, q < 00, then (Ip , Iq ) is a Bernstein pair.

Proof The proof follows from 4.10 since I q has a shrinking basis for
I < q < 00. Also, the estimates of 2.9 are not good enough to prove that
(lp,lq) is a Bernstein pair for p < q. However, a modification of the idea
of 3.4 yields an alternate proof. We write Ip = (Ejj/2(Vn»P' Iq = (Ejj/2(V,,)q,
where V n = n(n + 1)(2. This is possible by [49]. Again, using the technique
of [31, Theorem 3.7], we obtain that (lp .Iq/ is a Bernstein pair.

Now, we must consider Yoo-domains and 2",-ranges. We first show that
the problems reduce to the separable case.

4.14. LEMMA. Suppose that Eo is embedded in E such that E~ is comple­
mented in E". Then, there is a A ;?: 1 such that for any F and T E K(F, En)

CXn(T) ~ Acxn(iT),

Here. i denotes the embedding map.

Proof By 4.7, we have cxn(T) = cxn(T") = cx,,(Pi"T") ~ !I PI! cxn(i"T") =

II P II O:n(iT).
Always, cxn(iT) ~ cxn(T) and so under the hypotheses of 4.14 we have

that (cxn(T» and (cxn(iT)) are equivalent.

4.15. COROLLARY. The lemma is satisfied for Eo C E both Y",-space.

The corollary follows since the bidual of an 2"",-space is injective [23]. Now,
every 2"",-space contains a separable 2"CL subspace and this yields our result
for Y£ranges, i.e., if <F, E> is a Bernstein pair for all separable 2"x-spaces,
then (F, E) is a Bernstein pair for all Y",-spaces.

Next we show that we need only consider separable 2"CL-domains.

4.15. LEMMA. Suppose that Eo is a seprable Yx-subspace ofan Yx-space E.
If (Eo, F) is a Bernstein pair. so is (E. F,.

Proof Let T: Eo --+ F such that (cx,,(T» is equivalent to «(3n). Since E~

is injective, there is a projection P: E" --+ E~ . Since T is compact, T" maps
E" into JF, the canonical image of Fin F". Let Q denote the restriction of P
to E and let S = J-IT"Q. Since S extends T, cxn(S) ~ txn(T). On the other
hand, cxn(S) ~ I! ]-11111 Q il txn(T") = II Q II exn(T). the last inequality by 4.7,
i.e., (txn(S» is equivalent to (cxn(T»).

Now, we wish to reduce the problem to co' We recall the following fact,
which is immediate from Stegall's local selection theorem [52] (see also [24]).

4.16. LEMMA. If E is a separable 2X)-space, then there is a quotient map
q: E --+ Co and a projection P: E' --+ 11 such that Pq' is the identity on fl.
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4.17. THEOREM. Let E be a separable !:EeL-space. If <co, F, is a Bernstein
pair, then <E, F) is a Bernstein pair.

Proof Let T: CO ->- F be such that (an(T» is equivalent to (f3n). Let
T: E ->- F be defined by T = Tq where q is the special quotient mapping
of 4.16. Then, by 4.7, an(T) = cxn(T) = LXn(Pq'T) ,:::; II PI: cxn(q'T) =

: P II cxn(Tq) ~ II P IIII q Ii cxn(T), i.e .. «cxn{T» is equivalent to «cxn(T))).
To handle the case of separable 2'oc-ranges we must recall three facts.

The first is a remark of Pelczynski. the second and third are deep results of
Stegall [52] and Stegall and Hagler [51].

4.18. Remark. I. If Y is a subspace of X and Y is isomorphic to Z,
then there is an X isomorphic to X and containing Z isometrically.

2. The following statements are equivalent:
(a) There is a IfJ from E onto F such that 1fJ'(F') is complemented

in E'.
(b) For any Banach space X, I CD 1fJ: J(X, E) ->- J(X, F) is onto.

3. If E is a separable Yoc-space, then either E' is isomorphic to 11 or 11
is isomorphic to a subspace of E (actually (EB/oc"h is a subspace of E).

We can now prove the desired result.

4.19. THEOREM. For I ~ p < 00 , (lp, E, is a Bernstein pair for any
separable !f%-space E.

Proof We distinguish two cases.

I. E' is isomorphic to fl: In this case E has a shrinking basis [39].
Thus. by 4.10, (Ip ,E is a Bernstein pair for I < p < 00.

To prove that <11 , E:. is a Bernstein pair in this case, we proceed as follows.
Let 1fJ; E ->- Co be the special metric surjection (which exists by the remarks
above) and let T: It ->- be an operator obtained from Theorem 4.12.
Since 11 has the lifting property, there is an operator T: 11 ->- E such that
IfJT = T. Thus, cxn(T) ~ II IfJ II an(T) = a,,(T). Also by 1.2, cxn(T) = dn(T) ~
dn(IfJT) = dn(T) = cxn(T) and 4.19 follows for E' isomorphic to fl.

2. 11 is isomorphic to a subspace of E.
Tn this case, we can suppose, by the remarks above, that 11 is isometrically
isomorphic to a subspace of E. By Theorem 4.9, <Ip • 11> is a Bernstein pair.

Let T: Ip ->- 11 be an operator with (cxiT) equivalent to (f3n). Let I be the
isometry of 11 ->- E. We claim that IT has approximation numbers equivalent
to (f3n). First, observe that cxn(IT) ,:::; cxn(T) = cxiT). But T: l'i. ->- Ipl is a
diagonal map and so by 1.8. cxn(T) = dn(T). Thus, we have
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Thus, (rxnCIT») is equivalent to (rxn(T»). (The equality dn(T') = dn(TT)
follows since I' is a metric surjection.

We have only the extreme case <E1 ,E2>with both E1 , E2 2'ro-spaces,
to consider. By 4.17 and the remark after 4.15, we can suppose that E1 = Cll

and E2 is separable.

4.20. THEOREM. If E is a separable !-fro-space, then <co, E) is a Bernstein
pair.

Proof Again, we distinguish two cases:

1. E' is isomorphic to II. Since E' is separable, E has a shrinking basis
[39] and the result follows from 4.10.

2. II is a subspace E. Let T: Co ->- 11 be an operator corresponding to
(f3n)' The argument now proceeds as in case 2 of 4.19.

Combining the above results we finally obtain the main result.

4.20. THEOREM. Let E be an 2'p-space and F an 2'q-space 1 ~ p, q ::S; + 00.

Then, <E, F) is a Bernstein pair.

We prove a final result that gives a sufficient condition for two Banach
spaces E and F to form a Bernstein pair. The hypotheses may be satisfied
by arbitrary Banach spaces, but we have been unable to prove this.

We first introduce some notation.
Let rp = (rpn) be a linearly independent sequence in a Banach space E

and let f3 = (f3n) be a positive, monotonically decreasing null sequence.
Then, for each n let

4.21. Remark. Let E and F be Banach spaces and f3 = (f3n) a null
sequence as above. Suppose that there is a linearly independent sequence
t/J = (t/Jn) in F and a linearly independent sequence of rank one operators
rp = (rpn) in !-f(E, F) and a TE1:( rp, f3) such that

T(UEP 1:(t/J, f3).

Then, <E, F) is a Bernstein pair.

Proof First, observe that for any linearly independent sequence x = (x,),

dnC1:(x, f3)) = f3n .
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Indeed, dn(1:(x, (3») :<.:;; d(x, [Xl"'" xnD :<.:;; (3n for any X E 1:(x, (3). Also,
if An = {3n(UE n [Xl"'" Xn+lD and X E An' then for m = 1,2,... , n,

d(x, [Xl"'" xmD :<.:;; II X II :<.:;; (3n :<.:;; f3m , and d(x, [Xl"'" xmD = 0,

if m > n, i.e., An C 1:(x, (3).

By the Krein-Milman-Krasnoselskii theorem, we have f3n = diAn)'
Thus, (3n = diAn) :<.:;; di1:(x, (3» :<.:;; (3n for each n.

By hypothesis, we thus have

On the other hand, TE1:( cp, (3) and since lim n f3 n = 0, T E [cp,]. Since the
({', are all rank one operators, we thus have

cxn(T) ~ d(T, [CPl , ... , CPn]) :<.:;; {3n .

Thus, (3n :<.:;; dn(T) :<.:;; cxn(T) :<.:;; (3n and <E, F> is a Bernstein pair.
We remark that the fact that dn(1:( cP, (3» = (3n is well known. Indeed,

the sets 1:( cP, (3) have been called "full approximation sets" by Kolmogoroff
and have been studied in some detail (see, e.g., [25]).

5. CONCLUDING REMARKS

Since preparing this paper, we have received a preprint from Pietsch [47].
In his paper, Pietsch develops an axiomatic theory of s-numbers. A few
remarks concerning his paper are in order. We recall that Gohberg and Krein
[8] define the s-numbers of a bounded linear operator on Hilbert space as
the eigenvalues of (TT*)1/2. The approximation numbers and Kolmogoroff
diameters generalize this concept to operators between arbitrary Banach
spaces. Thus, Pietsch was led to develop a very general theory of s-numbers.
More specifically, let 2' denote the ideal of all bounded linear operators
between Banach spaces and A the class of all non-negative sequences. A
map s: 2' --+ A such that

(1) II TIl = So(T) ? Sl(T) ? "',
(2) Sn(S + T) :<.:;; Sn(S) + II TIl,
(3) Sn(RST):<':;; II R II Sn(S) II TIl,
(4) rank T :<.:;; n implies Sn(T) = 0, and

(5) dim E > n implies Sn(IE) = 1,

is called a sequence of s-numbers for the operator T.
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This definition is a true generalization of the s-numbers of operators on
Hilbert spaces as the following result of Pietsch shows: If T is a compact
operator on a Hilbert space and S any sequence ofs-numbers for T then Sn( T)

is the (n + l)-eigem'alue of (TT*)1/2. It is interesting that the sequence of
approximation numbers (cxn(T)) form the largest (under coordinatewise
ordering) s-numbers. The fact was also observed by Pietsch.

We conclude by mentioning the overlaps of [47] with our paper. Pietsch
has observed that our Theorems 1.1 and 1.2 and the result of Johnson
(Theorem 2.7) are valid. He also mentions that Solomjak and Tichomirov
[48] have obtained a version of our Theorem 2.12. We have been unable to
obtain paper [48] for comparison.

From the remarks in [47] it appears that our proof is much easier than that
of [48].

Also, Pietsch has observed that even for operators T: E ~ F with
dim E < + 00, it is possible that dn(T) ¥= dn(T). Thus, there is no analog
of 4.7 for Kolmogoroff diameters. In particular, if one considers the notion
of a Bernstein pair for Kolmogoroff diameters instead of approximation
numbers, there is, at present, no way to obtain results similar to those of
Chapter 4.
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